Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle †

نویسندگان

  • Seigo Ito
  • Shigeyoshi Hiratsuka
  • Mitsuhiko Ohta
  • Hiroyuki Matsubara
  • Masaru Ogawa
چکیده

We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AGV (automated guided vehicle) robot: Mission and obstacles in design and performance

The AGV (automated guided vehicle) was introduced in UK in 1953 for transporting. But nowadays, due to their high efficiency, flexibility, reliability, safety and system scalability, they are used in various application in industries. In brief, the AGV robot is a system which typically made up of vehicle chassis, embedded controller, motors, drivers, navigation and collision avoidance sensors, ...

متن کامل

A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Alg...

متن کامل

A Threshold Accepting Algorithm for Partitioning Machines in a Tandem Automated Guided Vehicle

Abstract : A tandem automated guided vehicle (AGV) system deals with grouping workstations into some non-overlapping zones , and assigning exactly one AGV to each zone. This paper presents a new non-linear integer mathematical model to group n machines into N loops that minimizes both inter and intra-loop flows simultaneously. Due to computational difficulties of exact methods in solving our pr...

متن کامل

Motion Guided LIDAR-camera Autocalibration and Accelerated Depth Super Resolution

In this work we propose a novel motion guided method for automatic and targetless calibration of a LiDAR and camera and use the LiDAR points projected on the image for real-time super-resolution depth estimation. The calibration parameters are estimated by optimizing a cost function that penalizes the difference in the motion vectors obtained from LiDAR and camera data separately. For super-res...

متن کامل

Object level HSI-LIDAR data fusion for automated detection of difficult targets.

Data fusion from disparate sensors significantly improves automated man-made target detection performance compared to that of just an individual sensor. In particular, it can solve hyperspectral imagery (HSI) detection problems pertaining to low-radiance man-made objects and objects in shadows. We present an algorithm that fuses HSI and LIDAR data for automated detection of man-made objects. LI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018